Part Number Hot Search : 
SC2738 128VLK 080CT ALS64 ATM10 12F60 IRFZ4 MOC205
Product Description
Full Text Search
 

To Download AUIRFS3206TRL Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? auirfs3206 auirfsl3206 v dss 60v r ds(on) typ. 2.4m ? max. 3.0m ? i d (silicon limited) 210a ? i d (package limited) 120a absolute maximum ratings stresses beyond those listed under ?absolute maximum ratings? ma y cause permanent damage to the device. these are stress ratings only; and functional operation of the device at these or any other condition beyond thos e indicated in the specificatio ns is not implied. exposure to absolute-maximum-rated conditions for exte nded periods may affect device reliability. the thermal resistan ce and power dissipation ratings are measured under board mounted and still air conditions. ambient temperature (ta) is 25c, unle ss otherwise specified. features ? advanced process technology ? ultra low on-resistance ? enhanced dv/dt and di/dt capability ? 175c operating temperature ? fast switching ? repetitive avalanche allowed up to tjmax ? lead-free, rohs compliant ? automotive qualified * description specifically designed for automotive applications, this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per sili con area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetit ive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications 1 2015-10-27 hexfet? is a registered trademark of infineon. * qualification standards can be found at www.infineon.com ? automotive grade symbol parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) 210 ? a i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) 150 ? i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) 120 i dm pulsed drain current ? 840 p d @t c = 25c maximum power dissipation 300 w linear derating factor 2.0 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy (thermally limited) ? 170 mj i ar avalanche current ? see fig.14,15, 22a, 22b a e ar repetitive avalanche energy ? mj dv/dt peak diode recovery ? 5.0 v/ns t j operating junction and -55 to + 175 ? t stg storage temperature range c ? soldering temperature, for 10 seconds (1.6mm from case) 300 ? thermal resistance ? symbol parameter typ. max. units r ? jc junction-to-case ? ??? 0.50 c/w r ? ja junction-to-ambient (pcb mount), d 2 pak ? ??? 40 d 2 pak auirfs3206 to-262 auirfsl3206 s d g s d g d base part number package type standard pack form quantity auirfsl3206 to-262 tube 50 auirfsl3206 auirfs3206 d 2 -pak tube 50 auirfs3206 tape and reel left 800 AUIRFS3206TRL orderable part number g d s gate drain source hexfet ? power mosfet
? auirfs/sl3206 2 2015-10-27 notes: ? ? calculated continuous current based on maximum allowable junc tion temperature. bond wire current limit is 120a. note that current limitations arising from heat ing of the device leads may occur with some lead mounting arrangements. ? repetitive rating; pulse width limited by max. junction temperature. ? limited by t jmax, starting t j = 25c, l = 0.023mh, r g = 25 ? , i as = 120a, v gs =10v. part not recommended for use above this value. ? i sd ?? 75a, di/dt ?? 360a/s, v dd ?? v (br)dss , t j ? 175c. ? pulse width ?? 400s; duty cycle ? 2%. ? c oss eff. (tr) is a fixed capacitance that gives the same c harging time as c oss while v ds is rising from 0 to 80% v dss . ? c oss eff. (er) is a fixed capacitance t hat gives the same energy as c oss while v ds is rising from 0 to 80% v dss . ? when mounted on 1" square pcb (fr-4 or g-10 material). fo r recommended footprint and soldering techniques refer to application note #an-994 ? r ? is measured at t j approximately 90c. static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 60 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.07 ??? v/c reference to 25c, i d = 5ma ? r ds(on) static drain-to-source on-resistance ??? 2.4 3.0 m ?? v gs = 10v, i d = 75a ?? v gs(th) gate threshold voltage 2.0 ??? 4.0 v v ds = v gs , i d = 150a gfs forward trans conductance 210 ??? ??? s v ds = 50v, i d = 75a r g gate resistance ??? 0.7 ??? ?? i dss drain-to-source leakage current ??? ??? 20 a v ds = 60v, v gs = 0v ??? ??? 250 v ds = 48v,v gs = 0v,t j =125c i gss gate-to-source forward leakage ??? ??? 100 na ? v gs = 20v ? gate-to-source reverse leakage ??? ??? -100 v gs = -20v dynamic electrical characteristics @ t j = 25c (unless otherwise specified) q g total gate charge ??? 120 170 nc ? i d = 75a q gs gate-to-source charge ??? 29 ??? v ds = 30v q gd gate-to-drain charge ??? 35 ??? v gs = 10v ? q sync total gate charge sync. (q g - q gd ) ??? 85 ??? t d(on) turn-on delay time ??? 19 ??? ns v dd = 30v t r rise time ??? 82 ??? i d = 75a t d(off) turn-off delay time ??? 55 ??? r g = 2.7 ?? t f fall time ??? 83 ??? v gs = 10v ? c iss input capacitance ??? 6540 ??? pf ? v gs = 0v c oss output capacitance ??? 720 ??? v ds = 50v c rss reverse transfer capacitance ??? 360 ??? ? = 1.0mhz, see fig. 5 c oss eff.(er) effective output capacitance (e nergy related) ??? 1040 ??? v gs = 0v, v ds = 0v to 48v ? c oss eff.(tr) effective output capacitance (time related) ??? 1230 ??? v gs = 0v, v ds = 0v to 48v ? diode characteristics ? parameter min. typ. max. units conditions i s continuous source current ??? ??? 210 ? a mosfet symbol (body diode) showing the i sm pulsed source current ??? ??? 840 integral reverse (body diode) ??? p-n junction diode. v sd diode forward voltage ??? ??? 1.3 v t j = 25c,i s = 75a,v gs = 0v ?? t rr reverse recovery time ??? 33 50 ns t j = 25c v dd = 51v ??? 37 56 t j = 125c i f = 75a, q rr reverse recovery charge ??? 41 62 nc t j = 25c di/dt = 100a/s ??? ??? 53 80 t j = 125c ? i rrm reverse recovery current ??? 2.1 ??? a t j = 25c ? t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d )
? auirfs/sl3206 3 2015-10-27 fig. 2 typical output characteristics fig. 3 typical transfer characteristics fig. 1 typical output characteristics fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) ? 60s pulse width tj = 25c 4.5v vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) ? 60s pulse width tj = 175c 4.5v vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 2.0 3.0 4.0 5.0 6.0 7.0 8.0 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ? ? ) v ds = 25v ? 60s pulse width t j = 25c t j = 175c -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 75a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 0 2000 4000 6000 8000 10000 12000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 40 80 120 160 200 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 48v vds= 30v vds= 12v i d = 75a fig 6. typical gate charge vs. gate-to-source voltage fig. 4 normalized on-resistance vs. temperature
? auirfs/sl3206 4 2015-10-27 ? fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 11. typical c oss stored energy fig 12. maximum avalanche energy vs. drain current fig. 7 typical source-to-drain diode 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a in c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0.1 1 10 100 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec dc 25 50 75 100 125 150 175 t c , case temperature (c) 0 40 80 120 160 200 240 i d , d r a i n c u r r e n t ( a ) limited by package -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 55 60 65 70 75 80 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e i d = 5ma 0 10 20 30 40 50 60 v ds, drain-to-source voltage (v) 0.0 0.5 1.0 1.5 2.0 e n e r g y ( j ) fig 9. maximum drain current vs. case temperature 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 200 400 600 800 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 21a 33a bottom 120a
? auirfs/sl3206 5 2015-10-27 ? fig 14. avalanche current vs. pulse width fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.infineon.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanc he is allowed as long as t jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 18a, 18b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 13, 14). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) = ? t/ z thjc i av = 2 ? t/ [1.3bvz th ] e as (ar) = p d (ave) t av fig 13. maximum effective transient thermal impedance, junction-to-case 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ? j ? j ? 1 ? 1 ? 2 ? 2 ? 3 ? 3 r 1 r 1 r 2 r 2 r 3 r 3 ? ? c ci= ? i ? ri ci= ? i ? ri ri (c/w) ? i (sec) ? 0.106416 0.0001 0.201878 0.0012621 0.190923 0.011922 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ?? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 40 80 120 160 200 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 120a
? auirfs/sl3206 6 2015-10-27 ? fig 16. threshold voltage vs. temperature fig. 18 - typical recovery current vs. di f /dt fig. 20 - typical stored charge vs. di f /dt fig. 17 - typical recovery current vs. di f /dt fig. 19 - typical stored charge vs. di f /dt -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 1.0a i d = 1.0ma i d = 250a id = 150a 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 2 4 6 8 10 12 14 16 18 i r r m - ( a ) i f = 30a v r = 51v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 2 4 6 8 10 12 14 16 18 i r r m - ( a ) i f = 45a v r = 51v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 50 100 150 200 250 300 350 q r r - ( n c ) i f = 30a v r = 51v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 50 100 150 200 250 300 350 q r r - ( n c ) i f = 45a v r = 51v t j = 125c t j = 25c
? auirfs/sl3206 7 2015-10-27 ? fig 21. peak diode recovery dv/dt test circuit for n-channel hexfet? power mosfets fig 22a. unclamped inductive test circuit fig 22b. unclamped inductive waveforms fig 23a. switching time test circuit fig 24a. gate charge test circuit fig 24b. gate charge waveform r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v t p v (br)dss i as fig 23b. switching time waveforms vds vgs id vgs(th) qgs1 qgs2 qgd qgodr
? auirfs/sl3206 8 2015-10-27 ? note: for the most current drawing please refer to ir website at http://www.irf.com/package/ d 2 pak (to-263ab) part marking information ywwa xx ? xx date code y= year ww= work week aufs3206 lot code part number ir logo d 2 pak (to-263ab) package outline (dimensions are shown in millimeters (inches))
? auirfs/sl3206 9 2015-10-27 to-262 part marking information ywwa xx ? xx date code y= year ww= work week aufsl3206 lot code part number ir logo to-262 package outline (dimensions are shown in millimeters (inches) note: for the most current drawing please refer to ir website at http://www.irf.com/package/
? auirfs/sl3206 10 2015-10-27 d 2 pak (to-263ab) tape & reel information (dimensions are shown in millimeters (inches)) note: for the most current drawing please refer to ir website at http://www.irf.com/package/ 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge.
? auirfs/sl3206 11 2015-10-27 ? ? highest passing voltage. published by infineon technologies ag 81726 mnchen, germany ? infineon technologies ag 2015 all rights reserved. important notice the information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (?beschaffenheitsgarantie?). with respect to any examples , hints or any typical values stated herein and/or any information regarding the application of the product, infineon technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any thi rd party. in addition, any information given in this document is subject to customer?s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer ?s products and any use of the product of infineon technologies in customer?s applications. the data contained in this document is exclusively intended for technically trai ned staff. it is the responsibility of customer?s technical departments to evaluate the suit ability of the product for the intended application and the completeness of the product information given in this document with respect to such application. for further information on the product, technology, delivery terms and conditions and prices please contact your nearest infineon technologies office ( www.infineon.com ). warnings due to technical requirements products may contain danger ous substances. for information on the types in question please contact your nearest infineon technologies office. except as otherwise explicitly appr oved by infineon technologies in a written document signed by authorized representatives of infineon technologies, infineon technolog ies? products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. qualification information qualification level automotive (per aec-q101) comments: this part number(s) passed automotive qualification. infineon?s industrial and consumer qualification level is granted by extension of the higher automotive level. d 2 -pak msl1 to-262 esd machine model class m4 (+/- 800v) ? aec-q101-002 human body model ? class h2 (+/- 4000v) ? aec-q101-001 charged device model class c5 (+/- 2000v) ? aec-q101-005 rohs compliant yes ? moisture sensitivity level ? revision history date comments 10/27/2015 ?? updated datasheet with corporate template ?? corrected ordering table on page 1.


▲Up To Search▲   

 
Price & Availability of AUIRFS3206TRL

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X